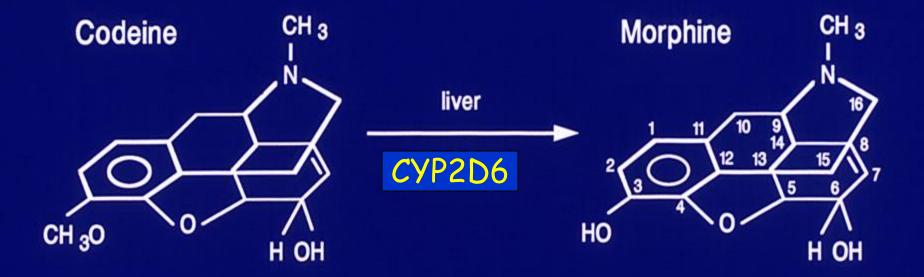
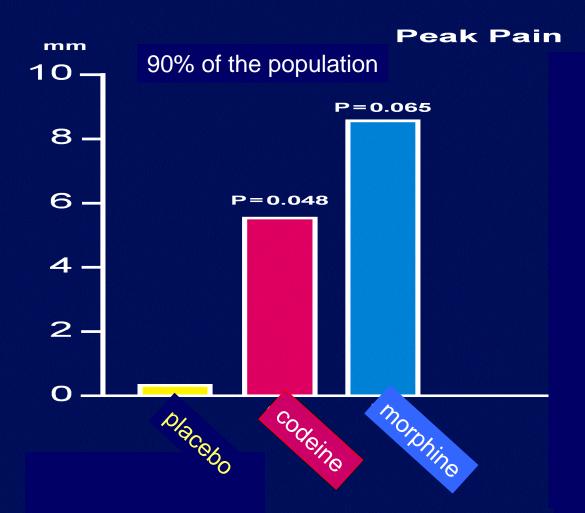
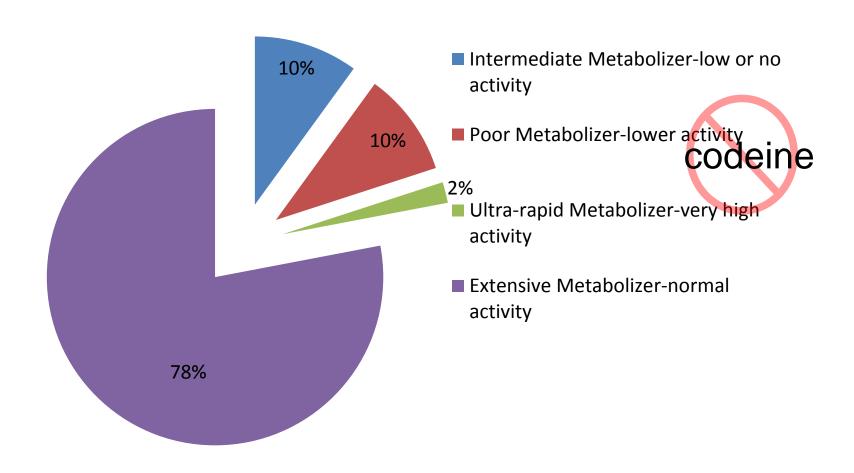
Integration of Pharmacogenetics into Clinical Practice


Mary V. Relling, Pharm.D.

St. Jude Children's Research Hospital and


PAAR4Kids, NIH Pharmacogenomics Research Network



Codeine is the same as placebo to 10% of the population

And too active for 1-2% of the population

CYP2D6 distribution of phenotypes

Barriers to integration of pharmacogenetic tests into clinical care

- Fragmentation of health-care systems---esp over a lifetime
- Health-care delivery system and incentive structures are focused on "sick care" and not disease prevention
- Lack of evidence of clinical utility or cost effectiveness-coupled with excessively high requirements
- Complexity of the underlying laboratory results
- Lack of use of computational decision support in all of medicine----including the medication process (testing, prescribing, distribution, and administration)
- Need for pre-emptive testing

At St. Jude, we can overcome (or ignore) many barriers to preemptive genotyping

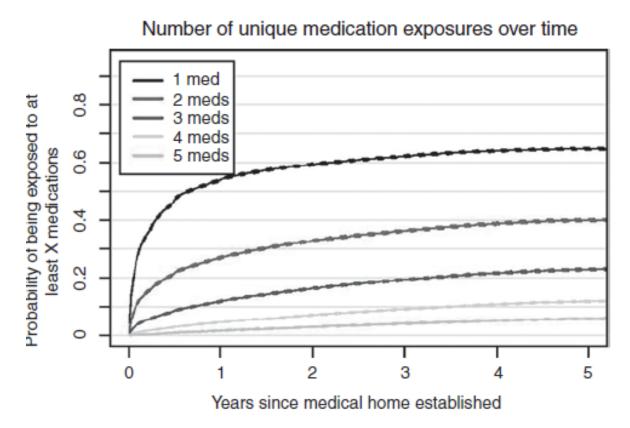
- We cover all patient care costs
- We provide <u>all</u> medications for 5000 unique high-risk patients per year
 - ~ 80% have cancer
 - ~20% have sickle cell, HIV, and other lifethreatening diseases
- We have a team approach to pt care
- We have an integrated, comprehensive EMR (Cerner) with customized decision support

Ability to genotype at lots of loci on CLIAapproved array is coming here and allows for pre-emptive genotyping

- Affy DMET array: over 1 million features to interrogate 1900 polymorphisms in 225 genes
- For the same money we spend on 2 genes, we can interrogate 225 genes
 - Makes pre-emptive genotyping a possibility

33 "Pharmacogenetically High Risk" Drugs, 11 CPIC genes

Orders; Querie	es performed May 2012)	
	Methylene blue	
	Metoprolol	
	Nitrofurantoin	
	Olanzapine	
	Phenazopyridine	
2023 of 4	4245 patients (48%) at	
St. Jude	received orders for at	
least one	e of 33 "high-risk" drugs	
,	Sertraline	
	Sulfamethoxazole-trimet	hoprim
	Sulfasalazine	
	•	
with just	first 3 genes (CYP2D6,	
TPMT, S	LCO1B1)	
	Warfarin	
	2023 of 4 St. Jude least one in a 1-yr 40% hav with just	Metoprolol Nitrofurantoin Olanzapine Phenazopvridine 2023 of 4245 patients (48%) at St. Jude received orders for at least one of 33 "high-risk" drugs in a 1-yr period. Sertraline Sulfasalazine 40% have high-risk genotypes with just first 3 genes (CYP2D6, TPMT, SLCO1B1)


Mercaptopurine

Optimizing Drug Outcomes Through Pharmacogenetics: A Case for Preemptive Genotyping

JS Schildcrout^{1,2}, JC Denny^{3,4}, E Bowton⁵, W Gregg^{3,4}, JM Pulley⁵, MA Basford⁵, JD Cowan⁶, H Xu³, AH Ramirez⁴, DC Crawford⁷, MD Ritchie⁸, JF Peterson^{3,4,9}, DR Masys^{3,4}, RA Wilke^{4,10} and DM Roden^{4,5,10,11}

54% exposed to one of 56 pgen high risk drugs in one year....

~ 75% of pts have high-risk genotypes with first 4 tests

PG4KDS: CLINICAL IMPLEMENTATION OF PHARMACOGENETICS at ST. JUDE

Goal: migrate pharmacogenetic tests from laboratory (array-based) into routine patient care, to be available preemptively

PG4KDS Protocol Clinical Implementation of Pharmacogenetics

Principal Investigator

Mary V. Relling

Co-Investigators

Kristine Crews

James Hoffman

Shane Cross

Christine Odom

Don Baker

Jerry Shenep

Fran Greeson

Aditya Gaur

Ulrike Reiss

Sheri Ring

Lisa Walters

Paula Condy

Terri Kuehner

Alicia Huettel

Cyrine Haidar

Cheng Cheng

Amar Gajjar

Alberto Pappo

Scott Howard

Melissa Hudson

Ching-Hon Pui

Sima Jeha

William E. Evans

External Co-Investigator (Collaborating Institutions):

Ulrich Broeckel, M.D.

Medical College of Wisconsin

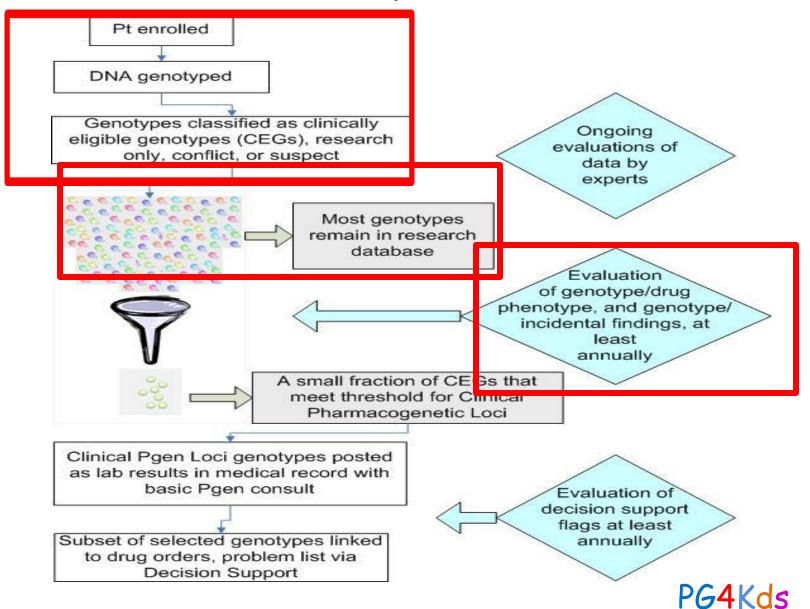
PG4KDS Protocol 18 months May 20th 2011 to Jan 30th, 2013

First pt enrolled	Current clinic	n
08-Jun-2011	Neuro-oncology	165
10-Jun-2011	BMT	20
04-May-2012	After completion tx	4
21-May-2012	HIV	92
24-Apr-2012	Radiation oncology	29
24-Jun-2011	Solid tumor	189
27-May-2011	Leukemia	277
08-Nov-2012	Non-malig Hematology	180
	Total	956

Why a research protocol?

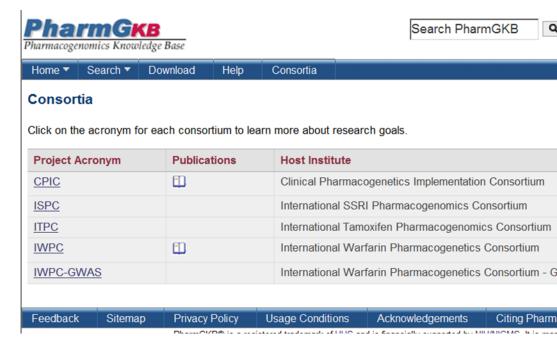
- DMET results available from CLIA lab, but process is complicated to go from lab results to clinically actionable recommendations
- Need process for withholding/sharing results
- Need consent for:
 - Withholding results
 - Incidental findings—lots of help from Ethics
 Committee and IRB

St. Jude Family Advisory
Council (Alicia Huettel et al)
educational video
www.stjude.org/pg4kds



Employees love working at St. Jude for tons of reasons—including our inspiring mission, diversity, resources, benefits and history. Each employee is a valued member of the St. Jude family, and the Employee Spotlight demonstrates how each employee's contributions support the St. Jude mission.

Melinda Wood Pharmaceutical Sciences


The process

CPIC: Clinical Pharmacogenetics Implementation Consortium

- Clinicians, scientists
- 60 members
- 33 institutions
- Observers: NIH and FDA
- 8 countries

CPIC: Implementing PGx a PharmGKB & PGRN collaboration

- CPIC's Inherent framework: if you had the genotype result, how should you act on it?
- Consistent with preemptive, array-based genotyping

Clinical Pharmacogenetics Implementation Consortium Guidelines for Thiopurine Methyltransferase Genotype and Thiopurine Dosing

MV Relling¹, EE Gardner¹, WJ Sandborn², K Schmiegelow^{3,4}, C-H Pui⁵, SW Yee⁶, CM Stein⁷, M Carrillo⁸, WE Evans¹ and TE Klein⁸

Clinical Pharmacogenetics Implementa Consortium Guidelines for Cytochrome P450-2C19 (*CYP2C19*) Genotype and Clopidogrel Therapy

SA Scott¹, K Sangkuhl², EE Gardner³, CM Stein^{4,5}, J-S Hulot^{6,7}, JA Johnson^{8,9,10}, DM Roden^{11,12}, TE Klein² and AR Shuldiner^{13,14}

Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Clinical Pharmacogenetics Implementation Genotypes and Warfarin Dosing

JA Johnson¹, L Gong², M Whirl-Carrillo², BF Gage³, SA Scott⁴, CM Stein⁵, JL Anderson⁶, SE Kimm MTM Lee¹⁰, M Pirmohamed¹¹, M Wadelius¹², TE Klein² and RB Altman^{2,13}

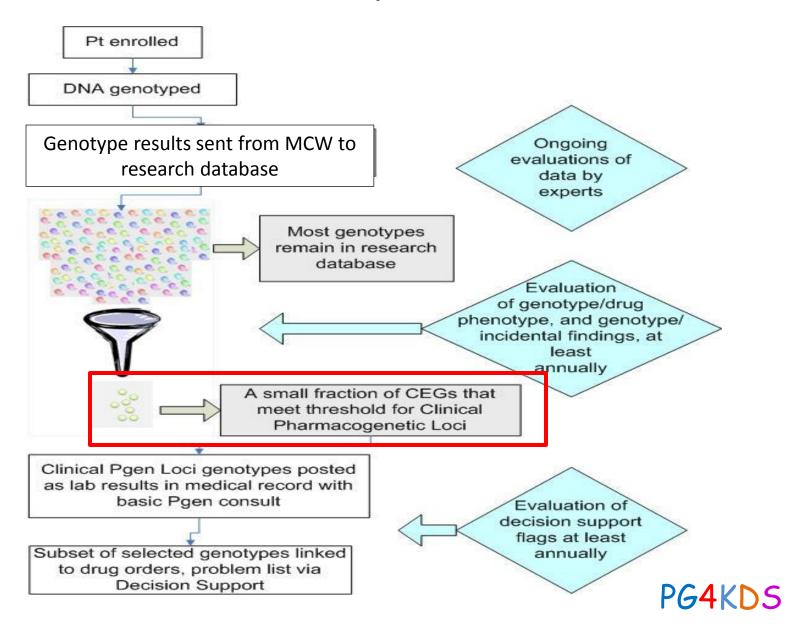
Consortium Guidelines for Human Leukocyte Antigen-B Genotype and Allopurinol Dosing

MS Hershfield^{1,2}, JT Callaghan^{3,4,5}, W Tassaneeyakul⁶, T Mushiroda⁷, CF Thorn⁸, TE Klein⁸ and MTM Lee^{9,10,11}

Clinical Pharmacogenetics Implementate The Clinical Pharmacogenomics ImplemenConsortium Guidelines for HLA-B Genot Consortium: CPIC Guideline for SLCO1B1 Abacavir Dosing and Simvastatin-Induced Myopathy

RA Wilke^{1,2}, LB Ramsey³, SG Johnson^{4,5}, WD Maxwell⁶, HL McLeod⁷, D Voora⁸, RM Krauss⁹, DM Roden^{1,2}, Q Feng^{1,2}, RM Cooper-DeHoff¹⁰, L Gong¹¹, TE Klein^{11,12}, M Wadelius¹³ and M Niemi¹⁴

CLINICAL PHARMACOLOGY & THERAPEUTICS


Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Codeine Therapy in the Context of Cytochrome P450 2D6 (CYP2D6) Genotype

KR Crews1, A Gaedigk2, HM Dunnenberger3, TE Klein4, DD Shen5,6, JT Callaghan7,8, ED Kharasch9 and TC Skaar7

Pharmacogenetics Oversight Committee (SJ)

- Meets quarterly
- Approves gene/drug pairs
- Approves decision support message and mechanisms
- Reports to P&T

The process

Travel Route of DMET Genotyping

DMET genotyping at Medical College of Wisconsin

Pharmaceutical Sciences Research database (225 genes parsed into separate files)

TPMT	DPYD	CYP3A4	GSTT1	CYP4B1
CYP2C19	VKORC1	CYP2F1	NAT1	CYP1A1
CYP2D6	SLCO1B1	CYP2J2	FMO3	CYP2C18
CYP2C9	G6PD	UGT1A1	CYP4F2	ABCC1

Extensive quality control

Prior to upload in EHR

Into EHR—Clinical Data repository *TPMT, CYP2D6, SLCO1B1*

DMET Tracker

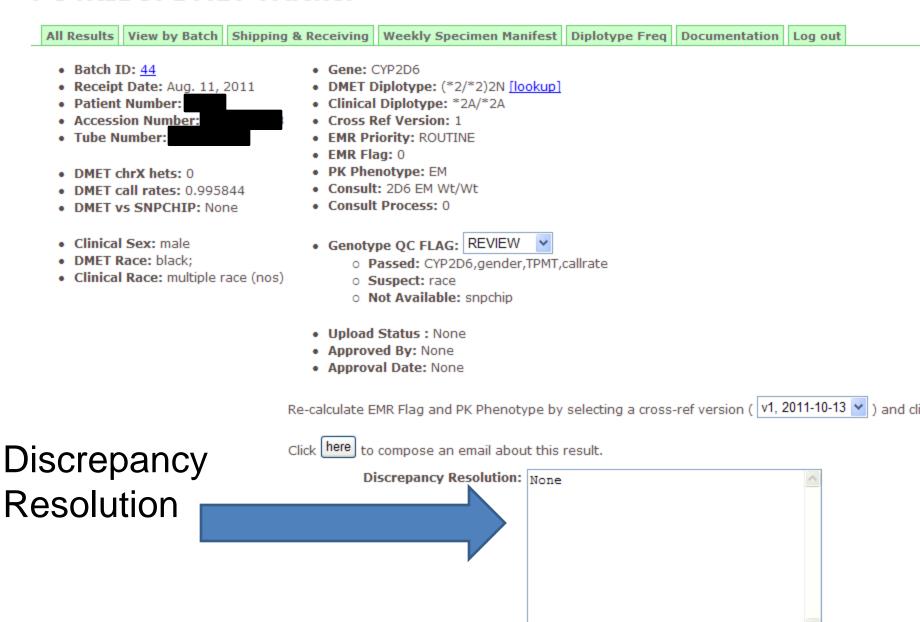
Search:

Gene	DMET Diplotype ♦	Existing Diplotype	DMET Race	Clinical Race	DMET₄ Gender	Clinical Gender	III Flan	Suspect Q¢	EMR Priority	PK Phenotype	Consult 		Upload Status	Approve for Upload All?
TPMT	* 1/* 1	None	black;	black	male?(0)	male	PASS		ROUTINE	HIGH ACTIVITY	<u>Homozygous</u> <u>WT</u>	٧1	in EMR	approved by kcrews
CYP2D6	(*29/*29)1N	None	black;	black	male?(0)	male	PASS		ROUTINE	IM	2D6 IM 29/5	٧1	in EMR	approved by khicks
TPMT	* 1/* 1	None	white;	white	female(3)	female	PASS		ROUTINE	HIGH ACTIVITY	Homozygous <u>WT</u>	٧1	in EMR	approved by khicks
CYP2D6	(*1/*2)2N	None	white;	white	female(3)	female	PASS		ROUTINE	EM	<u>2D6 EM</u> <u>Wt/Wt</u>	٧1	in EMR	approved by khicks
TPMT	* 1/* 1	None	white;	white	male?(0)	male	PASS		ROUTINE	HIGH ACTIVITY	Homozygous WT	٧1	in EMR	approved by kcrews
CYP2D6	(* 1/* 4)2N	None	white;	white	male?(0)	male	PASS		ROUTINE	EM	<u>2D6 EM</u> <u>Wt/NF</u>	٧1	in EMR	approved by kcrews
TPMT	*1/*8	G/G G/G A/A	black;	black	female(7)	female	REVIEWING	CYP2D6,TPMT	INDETERMINATE	UNKNOWN	TPMT Personalized	٧1	No	


```
#SJAccession=111600407B
#PatientName=Doe, Jane
                                                         Parse reports for
#DMETfile=DNL_CLIA_272_111600407B.dmet_GT.txt
                                                         results to extract
#DNL ID=DNL 272
                                                         diplotypes for each
#PatientID=33337
                                                         gene
#SampleType=Blood
#TranslationFile=DMET Plus.v1.20110329.translation
#AnnotationFile=DMET Plus.v1.20110329.dc annot.csv
#ReporterBuild=0.11.0
#VerifiedList=VerifiedbvAffy Mar11 marker list.txt
#GeneSymbol=CYP2D6
#PharmGKBLink=http://www.pharmgkb.org/do/serve?objId=PA128&objCls=Gene
Q-PCR Determined Copy Number
Q-PCR Probe ID HS04502391 cn
Called Interpretation Code NC/PRA/NA
Called Diplotypes Possible *2/*6
                                   *1/UNK,*2/UNK,*6/UNK,UNK/UNK
Called Novel Diplotypes Possible
Copy Number Corrected Alleles
                                   Q-PCR Copy Number = 2, no correction needed.
Number Non-reference Probe Sets
Probe Set ID
                 Affy Verified
                                  Genome Position dbSNP RS ID
                                                                     Genotype
        Call
                 Contributes To Alleles
                                           Description
                                           rs61736512
                                                             NoCall
AM 12278
                          Ch22:42525134
        *29
                 CYP2D6*29 1659G>A(V136I)
                                                             T/-
                                                                     Ref/Var
                          Ch22:42525086
                                           rs5030655
AM 12276
```

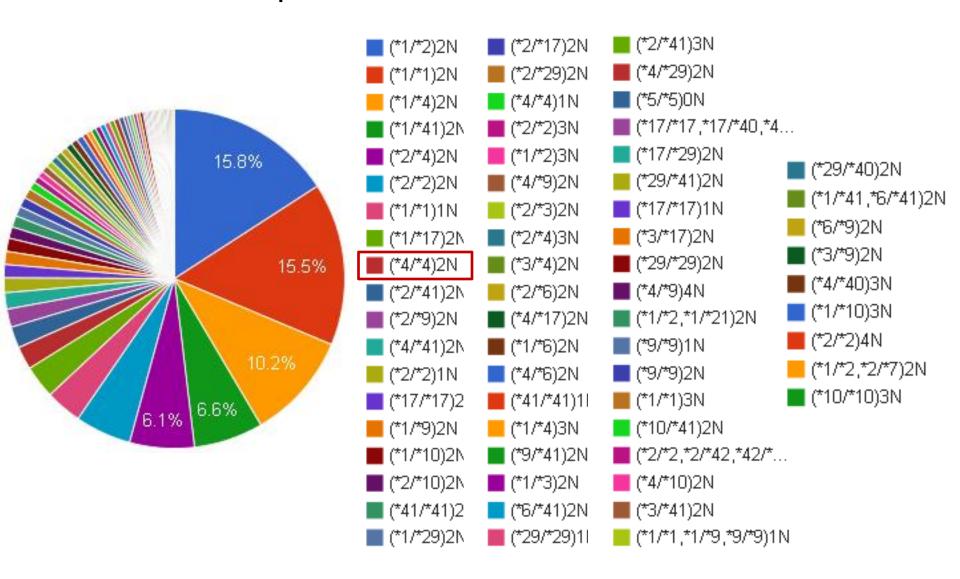
Quality Control Steps

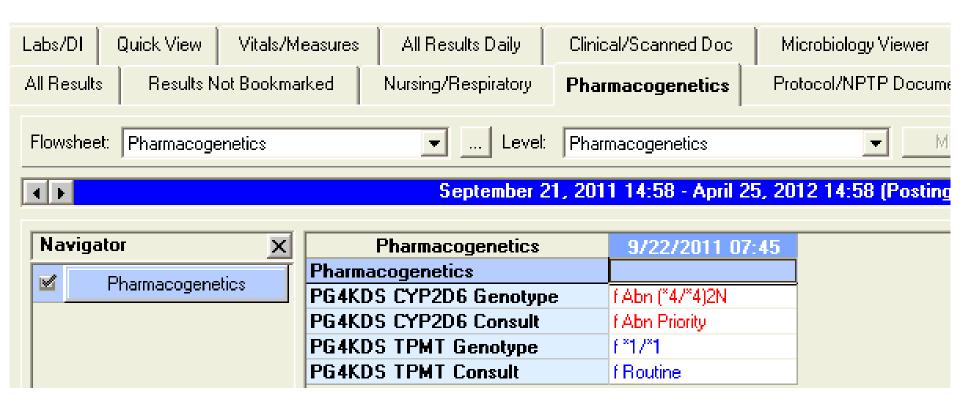
Check DMET genotypes against existing genotypes, gene-by-gene


	Show 10	entries								
Gene	DMET Diplotype	Existing Diplotype	DMET _A Race	Clinical Race	DMET Gender	Clinical Gender	QC Flag	Suspect QC	EMR Priority	PK
TPMT	*1/*1	G/G G/G A/A	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	HIG
CYP2D6	(*2/*6)2N	*2A/*6	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	HIG
CYP2D6	(*10/*41)2N	*41/NEGATIVE	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	
CYP2D6	(*2/*2)3N	*2A/*2A	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	
TPMT	*1/*3A,*3B/*3C	G/G A/G A/G	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	INTI A
CYP2D6	(*2/*9)2N	*2A/*9	white;	white	female(3)	female	PASS		ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(3)	female	PASS		ROUTINE	HIG
TPMT	*1/*1	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	HIG
CYP2D6	(*1/*41)2N	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	

Quality Control Steps

Check DMET gender against self-declared gender


	Show 10	entries								
Gene	DMET Diplotype	Existing Diplotype	DMET _♠ Race	Clinical Race	DMET Gender	Clinical Gender	QC Flag	Suspect QC	EMR Priority	PK
TPMT	*1/*1	G/G G/G A/A	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	HIG
CYP2D6	(*2/*6)2N	*2A/*6	white;	white	male?(0)	male	REVIEW	snpchip	ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	HIG
CYP2D6	(*10/*41)2N	*41/NEGATIVE	white;	white	female(2)	female	REVIEW	CYP2D6	ROUTINE	
CYP2D6	(*2/*2)3N	*2A/*2A	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	
TPMT	*1/*3A,*3B/*3C	G/G A/G A/G	white;	white	male?(0)	male	REVIEW	CYP2D6	PRIORITY	INTI £
CYP2D6	(*2/*9)2N	*2A/*9	white;	white	female(3)	female	PASS		ROUTINE	
TPMT	*1/*1	G/G G/G A/A	white;	white	female(3)	female	PASS		ROUTINE	HIG
TPMT	*1/*1	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	HIG
CYP2D6	(*1/*41)2N	None	white;	unknown	male?(0)	male	REVIEW	race	ROUTINE	


PG4KIDS: DMET Tracker

save your changes?

101 unique *CYP2D6* diplotypes observed in 732 patients

Translate diplotypes into phenotypes

Diplotype in Milli (Result)	Activity Score	Phen <i>o</i> type	Problem List Entry
(*5/*5)0N	0.0	PM	CYP2D6 - Poor Metabolizer
(*1/*1)1N	1.0	EM	None
(*2/*2)1N	1.0	EM	None
(*1/*1,*1/*9,*9/*9)1N	1.0 or 0.5	EM or IM	CYP2D6 - Possible Intermediate Metabolizer
(*41/*41)1N	0.5	IM	CYP2D6 - Intermediate Metabolizer
(*17/*17,*17/*40,*40/*40)1N	0.5 or 0.0	IM or PM	CYP2D6 - Possible Poor Metabolizer
(*4/*4)1N	0.0	PM	CYP2D6 - Poor Metabolizer
(*1/*1)2N	2.0	EM	None
(*1/*10)2N	1.5	EM	None
(*1/*17)2N	1.5	EM	None
(*1/*2)2N	2.0	EM	None
(*1/*2,*2/*7)2N	2.0 or 1.0	EM	None
(*1/*3)2N	1.0	EM	None
(*1/*4)2N	1.0	EM	None
(*1/*41)2N	1.5	EM	None
(*1/*6)2N	1.0	EM	None
(*1/*9)2N	1.5	EM	None
(*10/*41)2N	1.0	EM	None
(*17/*17)2N	1.0	EM	None
(*2/*10)2N	1.5	EM	None
(*2/*2)2N	2.0	EM	None
(*2/*29)2N	1.5	EM	None
(*2/*3)2N	1.0	EM	None
(*2/*4)2N	1.0	EM	None

About Us 🔻 News & Events Search ▼ Download Help Projects

Translational Pharmacogenetics Project (TPP) Look Up Tables By Gene

The Translational Pharmacogenetics Project (TPP) is a PGRN-led initiative with the goal to operationalize the work of CPIC by translating widely accepted actionable pharmacogenetics discoveries into real-world clinical practice.

TPP creates "look up" tables by gene which contain phenotype and clinical decision support system information based on haplotypes and diplotypes. These tables are a work in progress and are offered on PharmGKB "as is" until the tables become formalized.

Gene	Table	Publication Link
CYP2D6	CYP2D6 lookup table	A Clinician-Driven Automated System for Integration of Pharmacogenetic Interpretations Into an Electronic Medical Record.
<u>TPMT</u>	TPMT lookup table	A Clinician-Driven Automated System for Integration of Pharmacogenetic Interpretations Into an Electronic Medical Record.
CYP2C19	CYP2C19 lookup table	

Feedback Citing PharmGKB Acknowledgements

> PharmGKB® is a registered trademark of HHS and is financially supported by NIH/NIGMS. It is managed at Stanford University (R24 GM61374). @2001-2013 PharmGKB.

The Translational Pharmacogenetics Project (TPP) Includes:

- St. Jude
- Vanderbilt University
- University of Florida
- University of Maryland
- Ohio State University
- Mayo Clinic

A Clinician-Driven Automated System for Integration of Pharmacogenetic Interpretations Into an Electronic Medical Record

JK Hicks¹, KR Crews¹, JM Hoffman¹, NM Kornegay¹, MR Wilkinson¹, R Lorier², A Stoddard², W Yang¹, C Smith¹, CA Fernandez¹, SJ Cross¹, C Haidar¹, DK Baker³, SC Howard³, WE Evans¹, U Broeckel² and MV Relling¹

CLINICAL PHARMACOLOGY & THERAPEUTICS

PHARMACOGENETICS CONSULT FOR
CYP2D6 GENOTYPE

Sample for CYP2D6 Genotype Obtained: 9/22/2011 PG4KDS CYP2D6 Genotype Result: (*1/*1)2N

Based on the genotype result this patient is predicted to be an extensive (normal) metabolizer of CYP2D6 substrates.

This result signifies that the patient has two copies of a wild-type (normal function) allele. The expected phenotype suggests that there is no reason to selectively adjust the dose of most medications (including codeine) that are metabolized by the CYP2D6 enzyme pathway. The diplotype result equates to a CYP2D6 activity score of 2. For more information about specific medications metabolized by CYP2D6, please go to www.stjude.org/pg4kds.

Comments: none Jane Smith, Pharm.D., pager 1234 Deconstruct the consult into sections; scalable to add additional diplotypes

Phenotype
Assignment (6 versions)

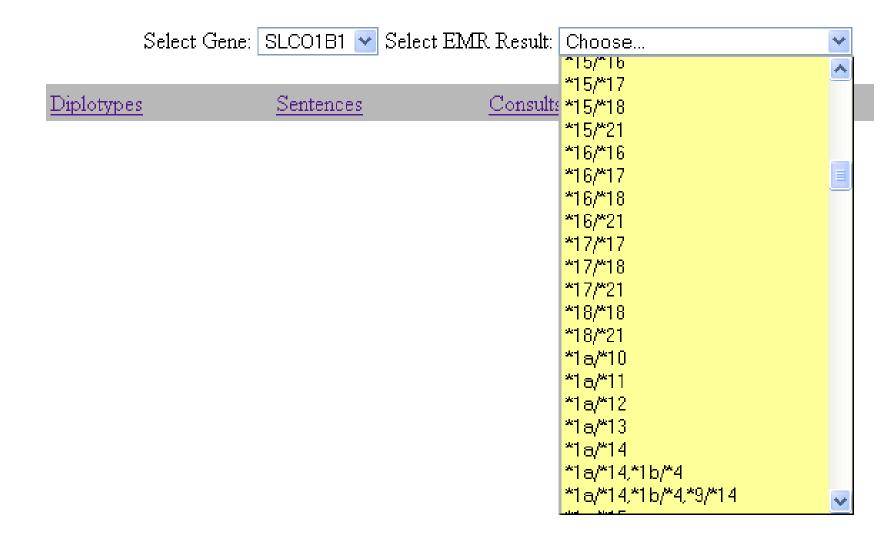
Diplotype Interpretation (32 versions)

Dosing Recommendations (6 versions)

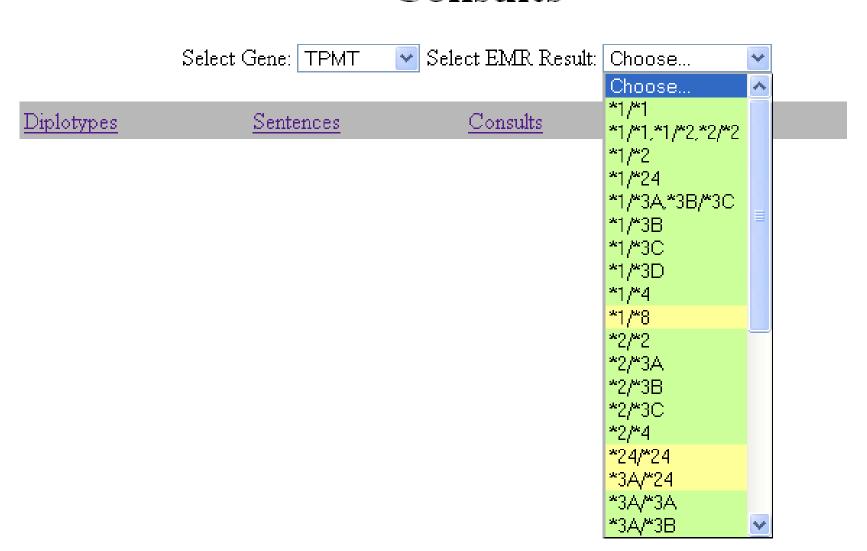
Activity Score (11 versions)

Educational Link

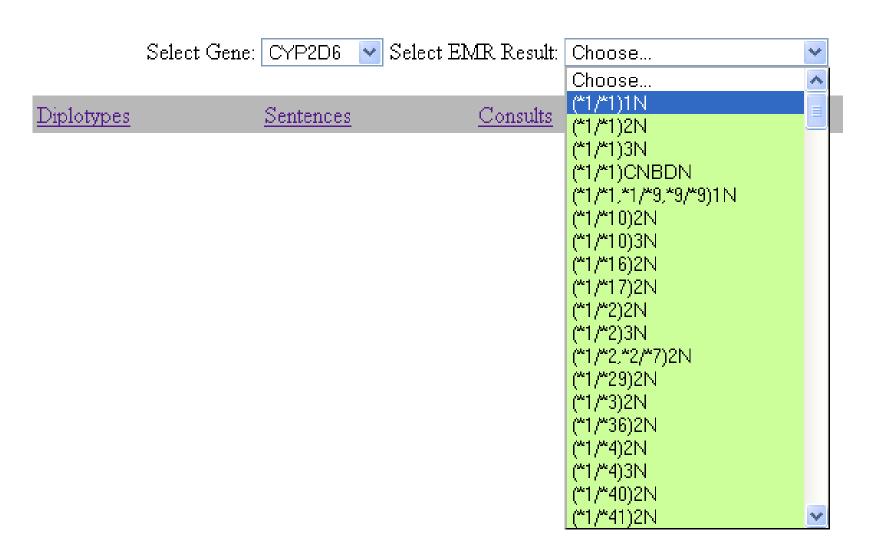
Diplotypes


New I

Consult Builder


Select Gene: CYP2D6 💌 🗹 If a consult has a working copy, only show

Status	Copy Nbr.	Diplotype	EMR Result	EMR Result Display	Activity Score	Phenotype	Consult Title	
Approved	1	*1/*5	(*1/*1)1N	(*1/*1)1N	1.0	EM	2D6 EM 1/5	
Approved	2	*1/*1	(*1/*1)2N	(*1/*1)2N	2.0	EM	2D6 EM Wt/Wt	T
Approved	3	*1/*1	(*1/*1)3N	(*1/*1)3N	3.0	UM	2D6 UM Wt/Wt xN	
Approved	CNBD	*1/*1	(*1/*1)CNBDN	(*1/*1)CNBDN	Unknown	Indeterminate	CYP2D6 Genotype Failure	
Approved	1	*1/*1,*1 /*9,*9/*9	(*1/*1,*1/*9,*9 /*9)1N	See Comments	1.0 or 0.5	EM or IM	CYP2D6 ambiguous result	
Approved	2	*1/*10	(*1/*10)2N	(*1/*10)2N	1.5	EM	2D6 EM Wt/RF	1
Approved	3	*1/*10	(*1/*10)3N	(*1/*10)3N	2.5 or 2.0	UM or EM	2D6 EM/UM Wt/RF 3N	
Approved	2	*1/16	(*1/*16)2N	(*1/*16)2N	1.0	EM	2D6 EM Wt/NF	
Approved	2	*1/*17	(*1/*17)2N	(*1/*17)2N	1.5	EM	2D6 EM Wt/RF	1
Annested	2	*1/*0	/*1/*9\9\T	/*1/*9\9\T	2.0	The	ODE BY MANAGE	


Consults

Consults

Consults

Diplotypes Sentences Consults New Patients

Consult Builder

Sentences

Select Gene: CYP2D6 💟 🗹 If a consult has a working copy, only show the working copy.

Status	Key Phrase	All	Text	
Approved	*1/*5 Diplotypo	Diplotype Interpretation	The CYP2D6 genotype result of *1/*1 with a copy number of 1 is equivone copy of a wild-type (*1, normal function) allele and one deleted (*5)	
Approved	*10/*5 Diplotype	Diplotype Interpretation	The CYP2D6 genotype result of *10/*10 with a copy number of 1 is equals one copy of a reduced function (*10) allele and one deleted (*5) alle	
Annrovedi	*16/*5 Diplotype	Diplotype Interpretation	The CYP2D6 genotype result of *16/*16 with a copy number of 1 is equivalent has one copy of a non-functional (*16) allele and one deleted (*5) allele.	uivalent to *16/*5. A r
Approved	*17/*5 Diplotype	Diplotype Interpretation	The C A result of *10/*5 signifies	ivalent to *17/*5. A r e.
Approved	*2/*5 Diplotype	Diplotype Interpretation	The C that the patient has one	ilent to *2/*5. A result allele.
Approved	*29/*5 Diplotype	Diplotype Interpretation	The C copy of a reduced function	ivalent to *29/*5. A r
Approved	*3/*5 Diplotype	Diplotype Interpretation	The C (*10) allele and one	dent to *3/*5. A result
Approved	*36/*5 Diplotype	Diplotype Interpretation	The C112Do genotype result of Sov So what a copy manned of 115 equations copy of a non-functional (*36) allele and one deleted (*5) allele.	uivalent to *36/*5. A r
	*4/*5		The CYP2D6 genotype result of *4/*4 with a copy number of 1 is equiv	alent to *4/*5. A resul

CLINICAL PHARMACOLOGY & THERAPEUTICS

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Codeine Therapy in the Context of *Cytochrome P450 2D6* (*CYP2D6*) Genotype

KR Crews¹, A Gaedigk², HM Dunnenberger³, TE Klein⁴, DD Shen^{5,6}, JT Callaghan^{7,8}, ED Kharasch⁹ and TC Skaar⁷

Table 1. Assignment of phenotypes based on *CYP2D6* diplotypes

Likely phenotype a	Activity	Genotypes	Examples of diplotypes
	Score		
Ultrarapid metabolizer	>2.0	An individual carrying	*1/*1xN, *1/*2xN
(~1-2% of patients)		more than two copies of	
(1 2/0 of patients)		functional alleles	
Extensive metabolizer	1.0-2.0	An individual carrying two	*1/*1, *1/*2, *2/*2,
(~77-92% of patients)		alleles encoding full or	*1/*41,*1/*4,*2/*5, *10/*10
(17 3270 of patients)		reduced function; or one	
		full function allele together	
		with either one non-	
		functional or one reduced	
		function allele	
Intermediate metabolizer	0.5	An individual carrying one	*4/*10, *5/*41
(~2-11% of patients)		reduced and one non-	
		functional allele	
Poor metabolizer	0	An individual carrying no	*4/*4, *4/*5, *5/*5, *4/*6
(~5-10% of patients)		functional alleles	

PHARMACOGENETICS CONSULT FOR
CYP2D6 GENOTYPE

Sample for CYP2D6 Genotype Obtained: 9/22/2011 PG4KDS CYP2D6 Genotype Result: (*1/*1)2N

Based on the genotype result this patient is predicted to be an extensive (normal) metabolizer of CYP2D6 substrates.

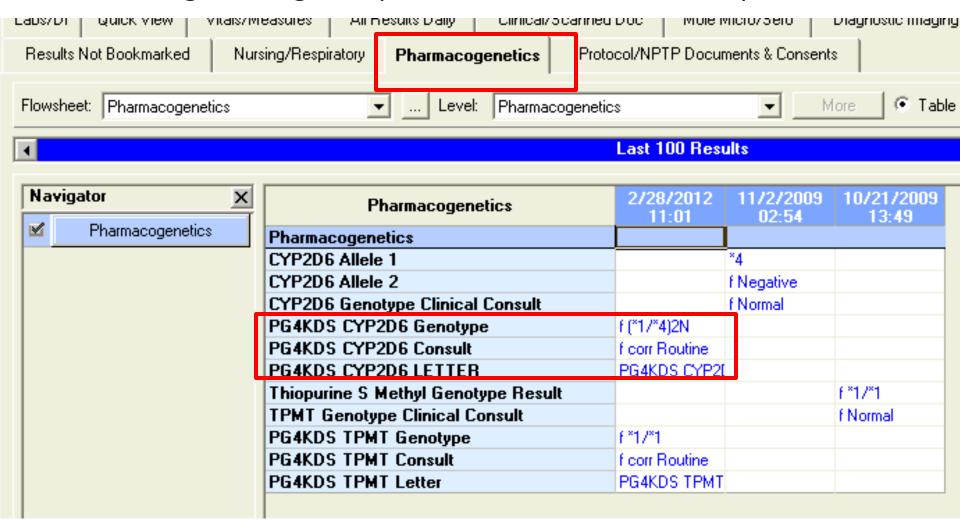
This result signifies that the patient has two copies of a wild-type (normal function) allele. The expected phenotype suggests that there is no reason to selectively adjust the dose of most medications (including codeine) that are metabolized by the CYP2D6 enzyme pathway. The diplotype result equates to a CYP2D6 activity score of 2. For more information about specific medications metabolized by CYP2D6, please go to www.stjude.org/pg4kds.

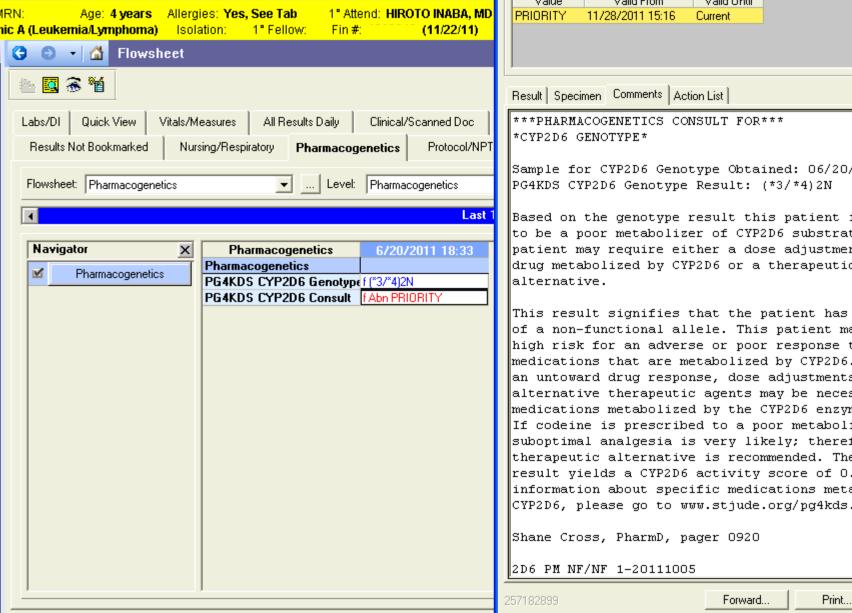
Comments: none Jane Smith, Pharm.D., pager 1234 Tables for database for all versions of sentences for each part of the Consult

Phenotype Assignment (6 versions)

Diplotype Interpretation (32 versions)

Dosing Recommendations (6 versions)

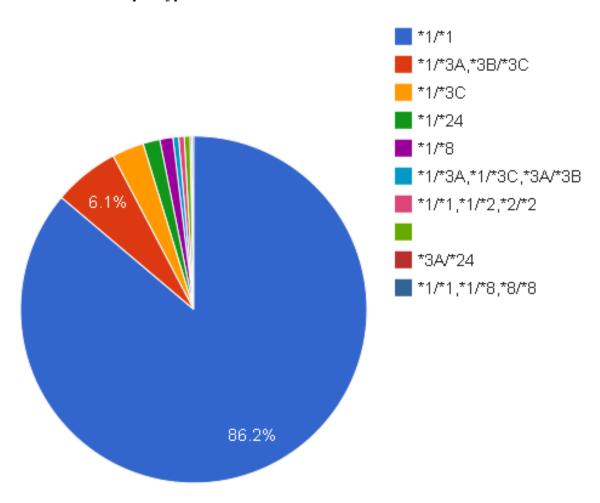

Activity Score (11 versions)


Educational Link

CYP2D6 Look-Up Table						
Result in EMR	Consult Type	EMR Flag (Color)	Consult Priority	Phenotype	EMR Problem List Entry	Modular Section Code
(*4/*4)2N	Automatic	Abnormal	Priority	₽M	CYP2D6 = Poor Metabolizer	1C, 2GG, 3U, 4R, 5CCC, 6GGG
(*1/*1)1N	Automatic	Normal	Routine	EM	None	1A, 2W, 3S, 4P,5CCC, 6GGG
(*2/*2)1N	Automatic	Normal	Routine	EM	None	1A, 2X, 3S, 4P, 5CCC, 6GGG
(*1/*1,*1/*9,*9/*9)1N	Personalized	Normal	Routine	EM or IM	None	3DDD, 5CCC, 6GGG
(*41/*41)1N	Automatic	Normal	Routine	IM	None	1B, 2CC, 3T, 4Q, 5CCC, 6GGG
(*17/*17,*17/*40,*40/*40)1N Based on o			-	IM or PM	CYP2D6 - Possible Poor Metabolizes	3DDD, 5CCC, 6GGG
rest/its 187	CYP2	96 °C	o po pristu	Itatio	CYP2D6 - Poor	e¹beer [,] built°
(*1/*1)2N	Automatic	Normal	Routine	EM	None	1A, 2E, 3S, 4N, 5CCC, 6GGG
(*1/*10)2N	Automatic	Normal	Routine	EM	None	1A, 2F, 3S, 4O, 5CCC, 6GGG
(*1/*17)2N	Automatic	Normal	Routine	EM	None	1A, 2F, 3S, 4O, 5CCC, 6GGG
(*1/*2)2N	Automatic	Normal	Routine	EM	None	1A, 2E, 3S, 4N, 5CCC, 6GGG
(*1/*2,*2/*7)2N	Personalized	Normal	Routine	EM	None	1A, 2HHH, 3S, 4XX, 5CCC, 6GGG
(*1/*3)2N	Automatic	Normal	Routine	EM	None	1A, 2G, 3S, 4P, 5CCC, 6GGG
(*1/*4)2N	Automatic	Normal	Routine	EM	None	1A, 2G, 3S, 4P, 5CCC, 6GGG
(*1/*41)2N	Automatic	Normal	Routine	EM	None	1A, 2F, 3S, 4O, 5CCC, 6GGG
(*1/*6)2N	Automatic	Normal	Routine	EM	None	1A, 2G, 3S, 4P, 5CCC, 6GGG
(*1/*9)2N	Automatic	Normal	Routine	EM	None	1A, 2F, 3S, 4O, 5CCC, 6GGG
(*10/*41)2N	Automatic	Normal	Routine	EM	None	1A, 2H, 3S, 4P, 5CCC, 6GGG
/*47/*47\2NI	A t t	NI a was a l	Dautina	E N A	Maria	14 3H 3C 4D FCCC CCCC

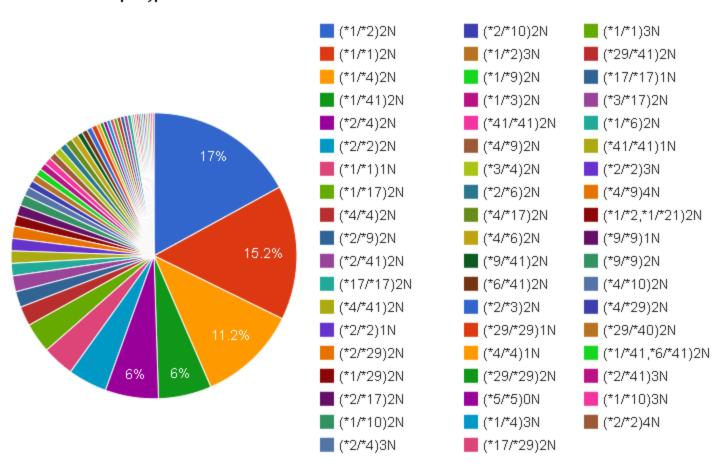
Pharmacogenetics tab added to EMR; all clinically eligible genotypes are entered, along with a gene-specific consult and letter to patient

Value Valid From Valid Until Sample for CYP2D6 Genotype Obtained: 06/20/11 Based on the genotype result this patient is predicted to be a poor metabolizer of CYP2D6 substrates. This patient may require either a dose adjustment of any drug metabolized by CYP2D6 or a therapeutic This result signifies that the patient has two copies of a non-functional allele. This patient may be at a high risk for an adverse or poor response to medications that are metabolized by CYP2D6. To avoid an untoward drug response, dose adjustments or alternative therapeutic agents may be necessary for medications metabolized by the CYP2D6 enzyme pathway. If codeine is prescribed to a poor metabolizer, suboptimal analgesia is very likely; therefore a therapeutic alternative is recommended. The diplotype result yields a CYP2D6 activity score of O. For more information about specific medications metabolized by CYP2D6, please go to www.stjude.org/pg4kds.

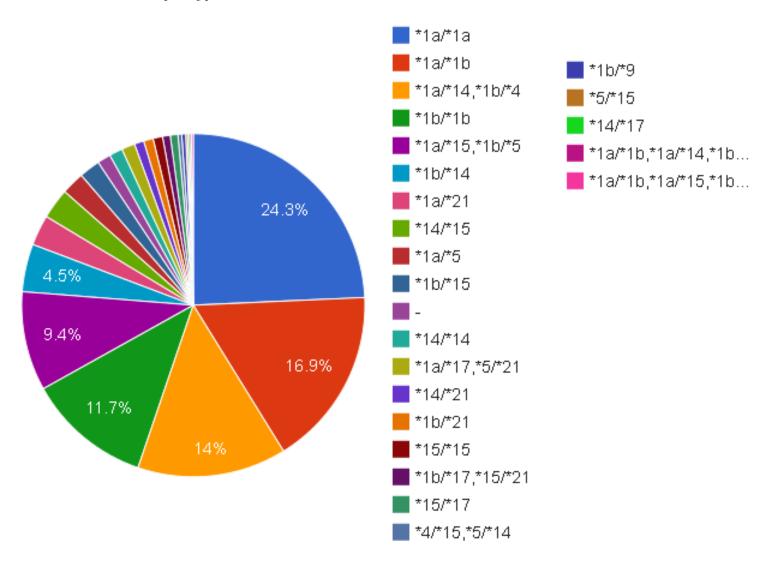

Close

Will need to repeat this process of translation for each new gene

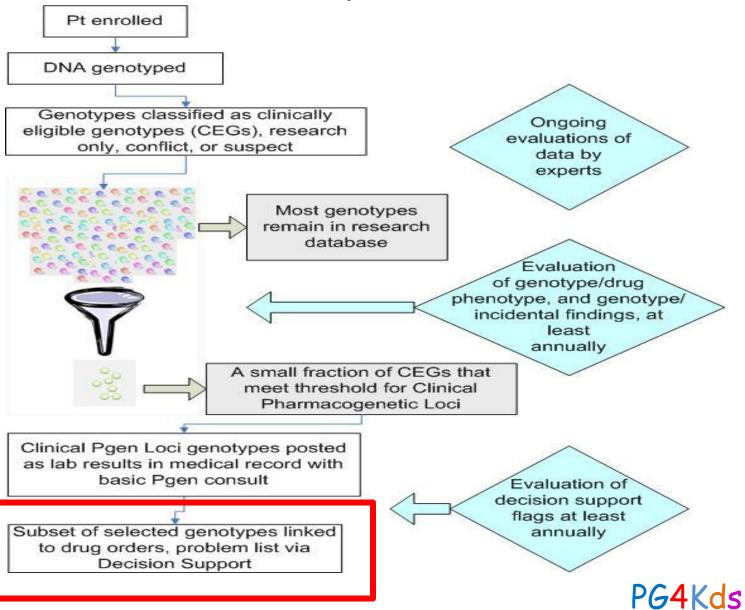
Name	Date modified	Size	Туре
DMET_STJUDE_305_111990741B_ABCB1.txt	8/16/2011 9:51 AM	4 KB	Text Document
DMET_STJUDE_305_111990741B_ABCB4.txt	8/16/2011 9:51 AM	3 KB	Text Document
DMET_STJUDE_305_111990741B_ABCB7.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCB11.txt	8/16/2011 9:51 AM	4 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC1.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC2.txt	8/16/2011 9:51 AM	5 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC3.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC4.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC5.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC6.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC8.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCC9.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCG1.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABCG2.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ABP1.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ADH1A.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ADH1B.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ADH1C.txt	8/16/2011 9:51 AM	1 KB	Text Document
DMET_STJUDE_305_111990741B_ADH4.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ADH5.txt	8/16/2011 9:51 AM	1 KB	Text Document
DMET_STJUDE_305_111990741B_ADH6.txt	8/16/2011 9:51 AM	2 KB	Text Document
DMET_STJUDE_305_111990741B_ADH7.txt	8/16/2011 9:51 AM	1 KB	Text Document
DMET_STJUDE_305_111990741B_AHR.txt	8/16/2011 9:51 AM	1 KB	Text Document
DMET_STJUDE_305_111990741B_AKAP9.txt	8/16/2011 9:51 AM	1 KB	Text Document
DMET_STJUDE_305_111990741B_ALB.txt	8/16/2011 9:51 AM	2 KB	Text Document
PART CTUDE 20F 111000741D ALDUMAT	0.45.0044.0.54.444	2.1/0	T ID


Observed TPMT Diplotypes

Total TPMT Diplotypes: 571 as of 1/9/2013


56 CYP2D6 diplotypes in first 499 pts

Total CYP2D6 Diplotypes: 499 as of 1/9/2013



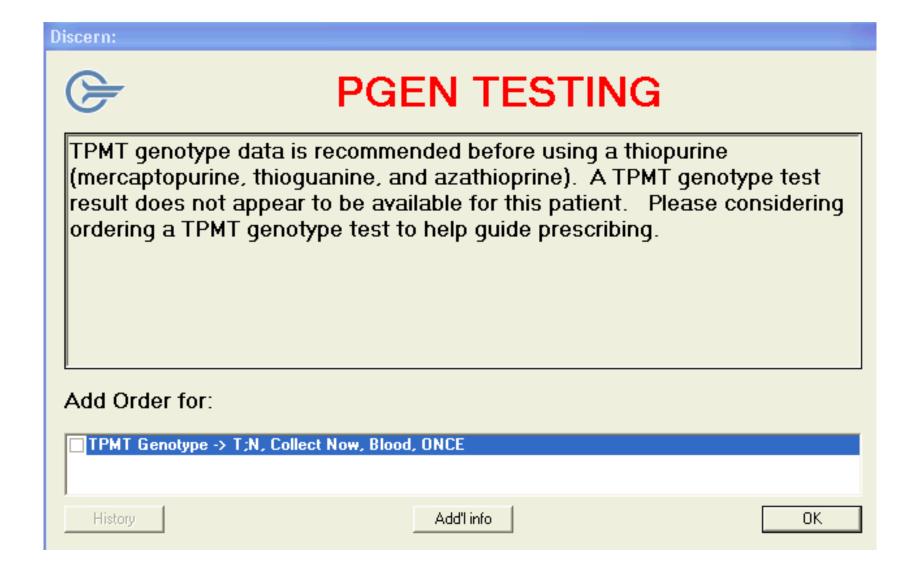
SLCO1B1

Total SLCO1B1 Diplotypes: 556 as of 1/9/2013

The process

CDS is both passive and active

- ➤ Translate Diplotype into phenotype
- ➤ Diplotype-specific Priority status (nl/abnl)
- Diplotype-specificConsult/interpretation
- ➤ If applicable: diplotype-specific trigger for active interruptive CDS rules to fire at point-of-care


Passive
CDS

➤active CDS


Two types of active CDS alerts delivered via alert to EMR User and/or email

- Pre-genetic test
- Post-genetic test

TPMT Pre-pharmacogenetic test warning: at point of care to prescriber

High-risk diplotypes translated to phenotype, automatically populated into Problem List of EMR

Customized Decision support "behind the scenes":

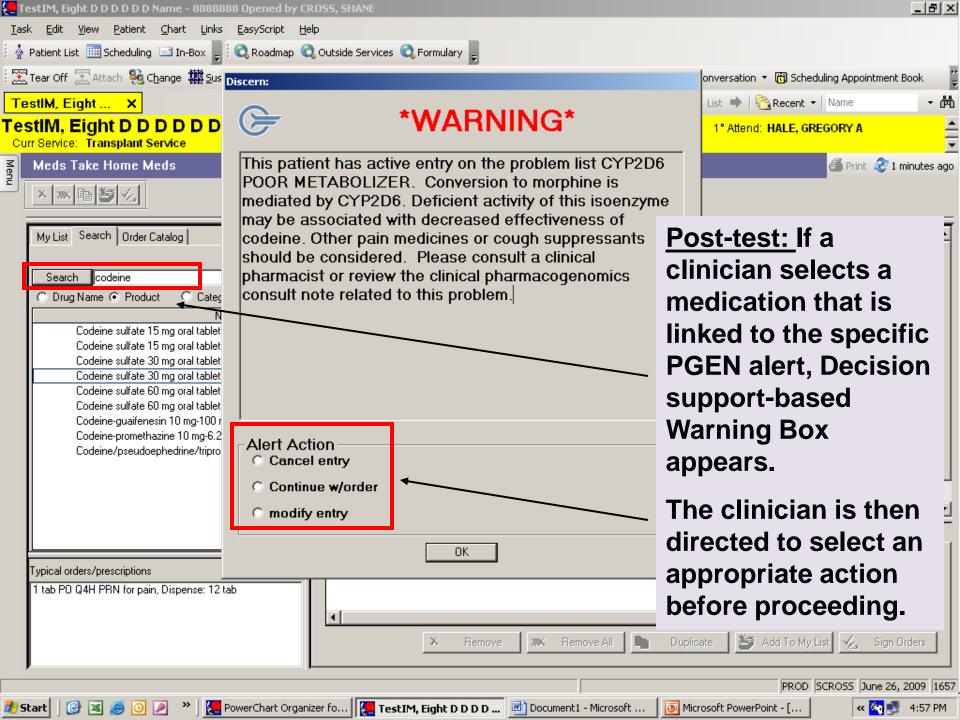
Links high-risk diplotypes to thiopurine ordering, prescribing, and administration

Need standard diagnostic terms

TPMT – SNOMED CT Code

Thiopurine methyltransferase deficiency

VS


TPMT- St Jude EMR Terms

- **TPMT Normal Activity**
- **TPMT Intermediate Activity**
- **TPMT Possible Intermediate Activity**
- **TPMT Low or absent Activity**

Post-test: when a high-risk drug collides with a high-risk (priority) genotype, active CDS alerts fire at point of care

Patients with high-risk genotype: e.g. CYP2D6 UM or PM; CYP2C19 PM; TPMT heterozygote

Patients with high-risk drugs: e.g. codeine, amitriptyline; clopidogrel azathioprine

Orders for highrisk drugs written for those with highrisk genotype

prompts an

alert to fire

WARNING

This patient has an active entry on the problem list for TPMT deficiency, the enzyme responsible for the metabolism of mercaptopurine, azathioprine, and thioguanine. Patients with TPMT deficiency MAY require REDUCED doses of these drugs, please refer to PK consult under PKN Tests tab regarding the correct dosage, or if necessary, page a Clinical Pharmacist.

Alert Action

- Cancel entry
- Dose altered accordingly
- Modify

History

Delivery of Genetic Information

- Posted to EMR
 - One gene at a time
 - As each gene is prioritized, it moves to EMR for all past and future pts
- Point-of-care decision supported alerts
- Automated email to MD for high risk diplotypes
- Automated letter to participants (their choice)
- General information and video on website

PG4KDS - Priority Genes

Updated May 2011

Thiopurine Methyltransferase (TPMT)

Thiopurine methyltransferase (TPMT) is an enzyme that breaks down (metabolizes) thiopurines. Thiopurines include

three medications: 6- mercaptopurine (6-MP), 6-thioguanine (6-TG), and azathioprine. 6-MP and 6-TG are often used to treat leukemia or lymphoma. Like many drugs, their effectiveness and side effects can vary from person to person. One of the reasons why this difference occurs is because each person's ability to metabolize thiopurines is different based on variations in the TPMT gene. Every person can be classified into one of 3 possible genotype groups. We use a different starting dose of 6-MP and 6-TG for the different genotype groups. By changing the dose based on a patient's genotype, there are fewer side effects (due to low blood counts).

Priority genotypes

- Heterozygous variant (intermediate activity) means there is one normal, functioning copy of the gene and one non-functioning copy of the gene. Patients have reduced TPMT activity and may require reduced doses of thiopurine medications to avoid side effects. About 1 in 10 people have this genotype.
- Homozygous variant (low or deficient activity) means there are two copies of the non-functioning gene and there is no normal TPMT enzyme. These patients are at a very high risk of experiencing toxicity (low blood counts) from 6-MP or 6-TG or azathioprine. Patients should receive substantially lower doses than normal to avoid side effects of low blood counts. About 1 in 400 people have this very high risk priority genotype.

Related Topics

Mary V. Relling, PharmD

Protocol: PG4KDS

Video: PGEN4Kids Educational

Video

Do you know...

An educational series for patients and their families

Thiopurine methyltransferase (TPMT) and medicines

Description

When you take a medicine (drug), your body has to have a way to handle the medicine. One way is for enzymes to metabolize (break down) the medicine. An enzyme called thiopurine methyltransferase (TPMT) has the ability to break down a class of medicines called thiopurines. Thiopurines include azathioprine (Imuran⁶), mercaptopurine (6-MP, Purinethol⁶), and thioguanine (6-TG, Tabloid⁶).

The thiopurines mercaptopurine and thioguanine are important chemotherapy agents used for the treatment of leukemia. Azathioprine is a medicine used to treat a variety of autoimmune diseases. Like many medicines, how well they work and their side effects can be different from person to person.

Patient Medication

Codeine

Description

Codeine is an opioid medicine used to treat pain. Codeine is also used to suppress cough. It is available as 15mg, 30-mg, and 60-mg tablets. All are taken by mouth. Codeine also can be combined with other medicines, such as:

- Acetaminophen (Tylenol® with codeine), to control pain (available in liquid and tablet form)
- Guaifenesin, to suppress cough (available in liquid form)
- Promethazine, to suppress cough (available in liquid form)

Laboratory testing

An enzyme in the body called cytochrome P450 2D6 (CYP2D6) has the ability to break down certain medicines including codeine. A genetic test can be done to determine if your CYP2D6 breaks down medicines slower or faster than normal. If your body breaks down the medicine slower or faster than normal, you should avoid taking codeine. For information about CYP2D6 and its effect on codeine, talk with your doctor or pharmacist, and see "Do you know... Cytochrome P450 2D6 (CYP2D6) and medicines." For more details, go to www.stjude.org/pg4kds.

St. Jude Online Formulary: linked to drugs, can also sort by gene

Drug Index: $\underline{A} \underline{B} \underline{C} \underline{D} \underline{E} \underline{F} \underline{G} \underline{H} \underline{I} \underline{J} \underline{K} \underline{L} \underline{M} \underline{N} \underline{O} \underline{P} \underline{Q} \underline{R} \underline{S} \underline{T} \underline{U} \underline{V} \underline{W} \underline{X} \underline{Y} \underline{Z}$

Α	ь	_		٠.	71	г
м	u	L	а	v	•	
•		_	-			•

Gene	Phenotype/Allele	Dosing Recommendations
HLA-B	*57:01 Positive	HLA-B*5701 allele has been detected in this patient. This allele is associated with abacavir hypersensitivity. DO NOT prescribe abacantiretroviral. Please consult a clinical pharmacist or review the pharmacogenetics tab for more information.
HLA-B	*57:01 Negative	No dosage change.

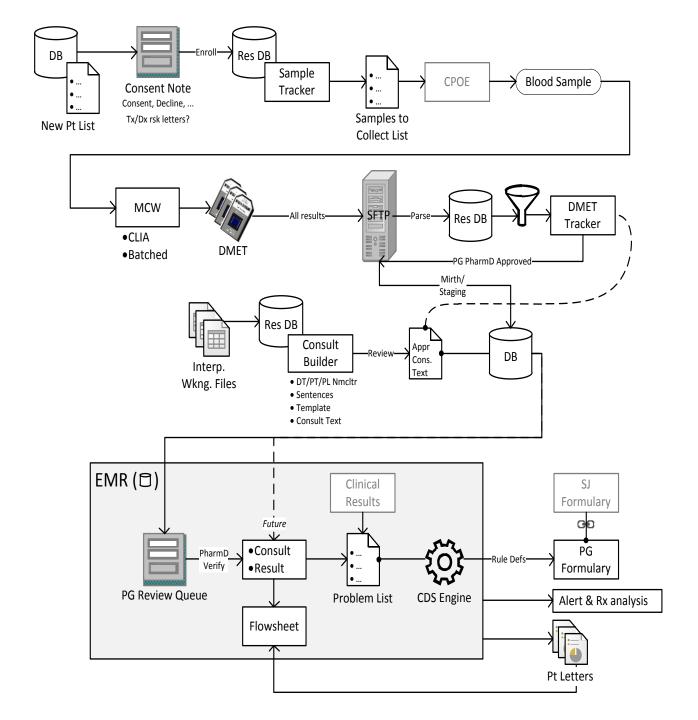
Last updated 10/16/2012 16:09

Back To Top

Amitriptyline

Gene	Phenotype/Allele	Dosing Recommendations
CYP2D6	Ultra-rapid metabolizer	Based on the genotype result, this patient is predicted to be a CYP2D6 ultra-rapid metabolizer. If amitriptyline is prescribed suboptimal plasma concentrations of the drug and its active metabolite are likely. Other agents not metabolized by CYP2D6

PG4KD5: current results (May 2011-March 2013)


- 1074 patients enrolled
 - ~ 3% refusal rate (33/1107)
- CDS for 9 drugs:
 - CYP2D6: Codeine, Tramadol, Amitriptyline, fluoxetine, paroxetine, ondansetron
 - TPMT: MP, thioguanine, azathioprine
- Now have 36 pharmacogenomic CDS alerts in the St. Jude EHR (still just 2 genes)
 - Post-test alerts fired 596 unique times over last 12 months

PG4KD5: Why so slow?

- No genes go into EMR without adequate (and automatable) interpretation
- Each drug requires
 - gene- and diplotype-specific active (for high risk)
 and passive CDS (clinical decision support)
 - Update of public website
 - Update pt educational materials
 - Competencies for clinicians
 - Approval of Oversight Committee
 - Sharing with PGRN, PharmGKB, others

Pharmacogenetics Implementation Status

			,		<u> </u>							
						Amitriptyli				Simvasta	Fluorou	Irinoteca
Drug	Thiopurin	es	Codeine		Tramadol	ne	Fluoxetine	Paroxetine		tin	racil	n
Cana		MT	СҮР	206	CYP2D6	CYP2D6	CYP2D6	CYP2D6	HLA- B*5701	SLCO1B1	DPYD	UGT1A1
Gene	I IP	IVI I	CYP	ZD0	CIPZDO	CIPZDO	CIPZDO	CIPZDO	B.3/01	SECOIBL	טויוט	OGITAL
					l	Increased	Increased	Increased				
			Increased	toxicity or		toxicity or therapeutic		toxicity or	Llynor		Myelo-	Neutrope
Adverse Outcomes	Myelosu	ppression	therapeu	•		failure	failure	therapeutic failure	1	Myopathy	1	nia
Implementation Status		ve	Liv		Live	Live	Live	Live	Live	Dec-12	1011	Live
	Clinical	PG4KDS	Clinical	PG4KDS	PG4KDS	PG4KDS	PG4KDS	PG4KDS	Clinical	PG4KDS		
Clinical impact of negative outcomes significant		√		/	√	√	√	√	1	√	√	1
Scientific evidence for drug gene effect		, ,		/	·	· ·	·	→		→	·	
		<u> </u>	,		*	*	•	,	,			
Patient target identifiable before they receive drug	,	✓		/	✓	✓	✓	✓	✓	✓	✓	✓
Alternative therapy available			,		✓	✓	✓	✓	✓	✓		
Gene added to DMET tracker		✓		✓	✓	✓	✓	✓		✓		
Gene specific look up tables created		✓		✓	✓	✓	✓	✓		✓		
Consult template written	✓	✓	✓	✓	✓	✓	✓	✓	✓			
Consult database updated		✓		✓	✓	✓	✓	✓				
CDS language developed	✓	✓	✓	✓	✓	✓	✓	✓	✓			
Patient letters		✓		✓	✓	✓	✓	✓				
Gene specific "Do you Know" sheet	✓	✓	✓	√	✓	✓	✓	✓				
Patient medication card	✓	✓	✓	✓	✓	✓	✓	✓				
PGEN formulary table updated	✓	✓	✓	✓	✓	✓	✓	✓	✓			
Drug monograph updated in formulary	✓	✓	✓	√	✓	✓	✓	✓	✓			
St Jude PG4KDS webpage updated		✓		✓	✓	✓	✓	✓				
Staff education	✓	✓	✓	✓	✓	✓	✓	✓				
Competencies	✓	✓	✓	✓	✓	✓	✓	✓				
P & T Communication	✓	✓	✓	✓	✓	✓	✓	✓				
POC Communication		✓		✓	✓	✓	✓	✓				
Go-Live Date	1/7/2010	5/18/2011	11/7/2007	5/18/2011	2/10/2012	5/30/2012	5/30/2012	5/30/2012	10/11/201			

We can deliver genetic information to our EMR, we can deliver it directly to the pt, we can deliver to outside clinicians...

- ...but until we have a universal lifetime EMR, the same fragmentation that affects all of health care will affect genomic medicine as well...
 - Without seamlessness between EMRs, decision support rules must be re-created for each system
 - Without EMR, genomic information will be underutilized

SJ Pharmaceutical

Paula Condy

Scott Howard

St. Jude

Josh Peterson

PGRN

Teri Klein

Alan Shuldiner

Gillian Bell

Kevin Hicks

Kris Crews

Terri Kuehner

Sheri Ring

Lisa Walters

Kelly Caudle

Ching-Hon Pui

Jerry Shenep

Christian Fernandez

Alberto Pappo

Julie Johnson

Cyrine Haidar

Shannon Gibbs

Sima Jeha

Russ Altman

Shane Cross

Margaret Edwards

Aditya Gaur

Dick Weinshilboum

James Hoffman

Ulrike Reiss

Wolfgang Sadee

Nancy Kornegay

SJ Biostatistics

Alicia Huettel

CPIC: Implementing PGx

Pam McGill

Emily Melton

Cheng Cheng

Deging Pei

Melissa Hudson

Amar Gajjar

Alejandro Molinelli

MCW

Uli Broeckel

Don Baker

Keith Kunkel

Rachel Lorier

Andras Sablauer

Alexander Stoddard

Rajesh Parashuran

David Zhao

Colton Smith

William Evans

Mark Wilkinson

Wenjian Yang

PG4KD5: Initial results through March 2012

- 2 genes (*TPMT, CYP2D6*)
- 5 drugs (Codeine, Tramadol, MP, thioguanine, azathioprine)
- 201 patients genotyped
- Ten pharmacogenetic CDS rules built
 - 10 CDS rules fired 920 times from 5/18/11 to 3/31/12

St. Jude Competencies for Pharmacogenetics

- General Pharmacogenetics Competency
 - Nurses, especially research nurses obtaining consent
 - Pharmacists
 - Physicians
- Competencies to perform pharmacogenetic interpretations
 - Gene specific
 - Drug modules

Addressing the need for competencies and other educational resources for pharmacogenetics

Leverage St. Jude experience and competencies

Vision for the Pharmacist's Leadership Role in Pharmacogenetics Recently Affirmed

ASHP Recommendation from Recent Summit on Pharmacy Practice (Pharmacy Practice Model Initiative - PPMI)

B23. The following characteristics or activities should be considered essential to pharmacist-provided drug-therapy management in optimal pharmacy practice models:

B23f. Adjustment of medication regimens based on genetic characteristics of the patient.

CASE STUDY

Implementing Proactive Pharmacogenetic Testing as a Standard of Care

Submitted by: James M. Hoffman, Pharm.D., MS, BCPS, Medication Outcomes & Safety Officer, Pharmaceutical Services, Associate Member, Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 150, Memphis, TN 38103, (901) 595-2767, James.Hoffman@stjude.org

Photo courtesy of St. Jude Children's Research Hospital

Primary Intended Outcomes

- Facilitate the appropriate use of proactive pharmacogenomic tests as the standard of care for St. Jude patients.
- Incorporate clinical decision support (CDS)
 tools linking pharmacogenetic testing to medication use, and characterize their use in the
 electronic medical record (EMR).

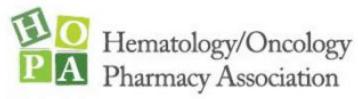
Relevant PPMI Recommendation(s)

B23. The following characteristics or activities should be considered essential to pharmacist-provided drug-therapy management in optimal pharmacy practice models:

B23f. Adjustment of medication regimens based on genetic characteristics of the patient.

Situation Analysis

Although pharmacogenetics has existed as a discipline since at least the 1950s, the adoption of genetic testing to guide the safe and effective use of medication remains the exception. While there has been considerable progress in the technical ability to perform genomic testing, various barriers exist that limit the adoption of pharmacogenetic tests as the standard of care. Examples of barriers include fragmentation of health care systems, especially for lifetime genetic results, complexity of the underlying laboratory results, and the immaturity of CDS and EMR systems to facilitate point of care use of pharmacogenetic data when making drug therapy decisions. At St. Jude, we are able to overcome many of these barriers to implementing pharmacogenetics. We provide all the medications for our patients, have decades of experience performing pharmacogenetic research, and have an integrated, comprehensive EMR with customized decision support.


Our philosophy is that pharmacogenetic tests results should be a part of the EMR prior to drug prescribing. If a genetic test is ordered at the time a drug is prescribed, clinicians must wait for the test results, which are often only available after the patient has already started therapy. A preemptive approach allows time for the reporting and interpretation of genetic test results so that

Positioning St. Jude implementation efforts as a model for others

- 16 External Presentations in first year of PG4KDS; audience included:
 - IOM
 - NHGRI
 - Pharmacists
 - Medical Informatics
- Multiple awards for paper describing pre-PG4KDS services
- 2nd Year of only Pharmacogenetics Residency in the US; pursuing accreditation

Development and implementation of a pharmacist-managed clinical pharmacogenetics service

KRISTINE R. CREWS, SHANE J. CROSS, JOHN N. MCCORMICK, DONALD K. BAKER, ALEJANDRO R. MOLINELLI, RICHARD MULLINS, MARY V. RELLING, AND JAMES M. HOFFMAN

Purpose. The development and implementation of a pharmacist-managed clinical pharmacogenetics service are was modeled after and integrated with an already-established clinical pharmacokinetics service. A steering committee was formed to evaluate the use of available

the leadership role that pharmacists can take in moving pharmacogenetics from research to patient care.

Conclusion. The development of and

for the genes to be tested by the clinical

positive clinician feedback. The successful pharmacogenetics service. The service implementation of this service highlights

vices; Pharmacogenetics Am J Health-Syst Pharm. 2011; 68:143-50

Spreading PG4KDS as a model implementation of pharmacogenetics

- Summary of Outreach and Educational Efforts
 - Clinical Decision Support and other informatics tools
 - Challenging to share CDS tools for any area not just genomics
 - Our experience is illustrating fundamental informatics limitations that will apply to any implementation (e.g. lack of thoughtful diagnostic codes)
 - Competencies and educational tools
 - General and specific
 - Pharmacists and other clinicians
 - Reaching many audiences but uniquely positioned to reach pharmacists

Gene	Diplotype	Sections codes
CYP2D6	*5/*5	1C, 2GG, 3U, 4R, 5CCC, 6GGG
CYP2D6	*1/*5	1A, 2W, 3S, 4P,5CCC, 6GGG
CYP2D6	*2/*5	1A, 2X, 3S, 4P, 5CCC, 6GGG

- 1C Based on the genotype result this patient is predicted to be a poor metabolizer ...
- Based on the genotype result this patient is predicted to be an extensive (normal) metabolizer of CYP2D6 substrates.
- 2GG A result of *5/*5 signifies both CYPD2D6 alleles are deleted in this patient.
- The CYP2D6 genotype result of *1/*1 with a copy number of 1 is equivalent to *1/*5. A result of *1/*5 signifies ...
- The CYP2D6 genotype result of *2/*2 with a copy number of 1 is equivalent to *2/*5. A result of *2/*5 signifies ...
- This patient may be at a high risk for an adverse or poor response to medications that are metabolized by CYP2D6. ...
- 3S This signifies the patient has an additional copy of either a wild-type (normal function) allele or a non-functional allele. ...

ASHP is endorsing CPIC guidelines

White Paper on Pharmacy Technicians (PDF)

Suggest a Topic for ASHP